当前位置: 液体金属 >> 液体金属市场 >> 金属3D打印行业研究先进增材制造工艺,航
(报告出品方/作者:广发证券,孟祥杰、代川)
一、3D打印为传统制造补充,技术特点契合航空航天
(一)3D打印可成形定制化的复杂结构件,是传统制造技术的重要补充
3D打印,又称增材制造(AdditiveManufacturing,AM),是对于传统工业生产的一种“变革性”方法。传统的减材制造工艺是指利用已有的几何模型工件,用工具将材料逐步切削、打磨、雕刻,最终成为所需的零件。而3D打印恰恰相反,通过借助于3D打印设备,对数字三维模型进行分层处理,将金属粉末、热塑性材料、树脂等特殊材料一层一层地不断堆积黏结,最终叠加形成一个三维整体。3D打印是一种跨学科的交叉技术,涵盖机械、材料、计算机视觉、软件、电子等多个学科,而其中核心的技术在于3D打印机的制造,对于材料、软件、设计等也有特殊要求。
与传统制造工艺相比,3D打印具有可成形复杂结构、缩短产品实现周期、产品强度高重量轻、材料利用率高等特点,但其成本也比较高。3D打印技术的特点具体如下:(1)可制造复杂几何结构的部件,实现一体化生产,结构的复杂性不会带来额外的成本。设计师不再受到传统制造工艺的约束,可以更自由地创造零件。(2)缩短新产品研发和实现周期。传统工艺在研发新产品时,需要设计生产新模具,建立装配流程,而3D打印无需模具,工艺流程短。(3)产品具有强度高、重量轻的特点。3D打印部件可以实现传统工艺难以加工的蜂窝点阵结构,在保证性能的前提下,大幅减轻重量。基于3D打印快速凝固的工艺特点,可以实现良好的力学性能,从而保证强度有所提高。(4)材料利用率大幅提高。由于材料是逐层叠加的,在生产过程中几乎不会产生材料的浪费,材料利用率达到90%以上。(5)设备成本和材料成本较高。工业级3D打印设备价格昂贵,少则一两百万元,多则上千万元。此外,由于工艺比较特殊,3D打印对材料有特殊的要求,普通材料需要经过调整。而材料的研发难度大,成本较高,在一定程度上限制了3D打印的发展。
(二)30余年发展技术逐步完善,多材料、大型化、批量化为改进方向
经过30多年的发展,3D打印技术不断完善,目前已形成了3D生物打印、有机材料打印、金属打印等多种打印模式,鉴于国内大型3D打印企业如铂力特等主营金属打印,本文重点论述该打印模式的特征。金属3D打印一般利用激光、电子束能量源熔化金属粉末,使得金属粉末熔结,堆积形成一个整体结构。在整个工艺中金属粉末的输入方式有两种,铺粉和送粉。根据不同送粉方式,金属3D打印工艺原理分为定向能量沉积(也称为送粉)和粉末床选区熔化(也叫为铺粉)。铺粉指把金属粉末铺到基板上,形成一个薄层,然后通过激光熔化薄层上的特定区域进而熔结在一起。与铺粉相比,送粉未形成薄层,通过粉末喷嘴直接把粉末输送到激光在基体上形成的熔池中,熔结形成一个整体。主流的金属3D打印技术根据原理可以大致分为激光选区熔化技术(SLM)、电子束熔化成形(EBM)、激光净成形技术(LENS)电子束熔丝沉积技术(EBF)。
对于金属3D打印(增材制造)而言,其特性决定了它的应用将是传统制造工艺的重要补充而非完全替代,且体现在不同行业的不同环节上应用均有所差异。据德勤咨询发布的《科技、传媒和电信行业预测》与《Additivemanufacturingmethods–stateofdevelopment,marketprospectsforindustrialuseandICT-specificchallengesinresearchanddevelopment》,与使用数控机床相比,增材制造的每个零件成本更加高昂,且每个零件制造时间为数小时而非数分钟(同样不包含精加工和各类后期加工时间)。相对于传统制造业擅长的批量化、规模化生产领域,3D打印效率较低、成本较高。此外,3D打印机目前功能比较单一,对于不同的材料,可能需要不同型号、工艺的打印机,这就需要制造企业购置多台不同型号打印机,增加了生产成本。尽管如此,某些零件只可能通过3D打印制作,如上文所述的部件内几何蜂窝结构。另外,当零件量过低时,如原型制作以及模具应用环节,传统制造方法和减材制造工艺不适用或者成本过高、时间过长时,则也“只可”采用3D打印方法。基于3D打印自身的特点,从环节上来看,3D打印更偏向于设计端,更适用于部分小批量、个性化、定制化高端产品的设计与生产,在铸模、铸件、工具、模具和夹具上亦有更广泛的应用。
金属增材制造技术发展中有三个重要的因素,设备、材料和工艺,目前在这三方面还有提高的空间。为了扩大3D打印技术的应用规模,金属增材制造技术正在朝着低成本、大尺寸、多材料、高精度、高效率方向发展。(1)金属增材设备朝着大型化、专业化方向发展。随着对打印大尺寸结构和特定领域的需求不断增加,金属3D打印设备朝着大型化、专业化发展已经成为趋势。(2)可打印原材料不断增加,复合材料打印开始出现。目前应用于金属3D打印的原材料种类偏少、材料质量不高,随着增材制造在工业领域的不断渗透,市场对于金属3D打印可实现多材料混合打印的需求也逐步上升。此外,多种复合材料同时打印开始出现,可结合不同材料的优点。(3)开发新的金属增材制造技术。传统的金属增材制造技术存在高成本、效率低等问题,其中效率低也是限制增材制造在许多领域替代传统减材制造的关键因素之一。预计随着未来该技术的逐渐成熟,如激光功率的提高、打印路径的优化等,增材制造生产速率或有所改进。
(三)增材制造可打印复杂件,减重、周期短的特点契合航空航天需求
金属增材制造工艺能够契合航天航空产业的苛刻条件。例如,飞行器要求高速、续航时间长、安全高效低成本等条件,对结构设计、材料和制造提出了更高要求。对于增材制造这一改进工艺流程,其较多技术优势能够很好的契合航空航天的多项要求。例如,结合上文,(1)增材制造可实现传统减材工艺无法实现的复杂几何结构件,实现传统工艺无法加工的蜂窝点阵结构,能够在保证性能的前提下大幅减轻部件质量,达到提升航空航天装备机动性、速度及节省高昂的航空燃油费的目的;(2)同时3D打印技术能够缩短高性能部件的制造流程,无需研发制造部件使用的模具,大大缩短了研发周期,降低时间成本,利于加快项目进程;(3)因航空航天装备服役环境恶劣,尤以航空发动机为典型,使用环境为高温、高压,传统材料难以承受,适配于此类环境的材料的研制难度大、价格高昂。增材制造工艺可大幅提高材料利用率的特点可较好契合这特征,可节省装备研制经费。
3D打印技术在航天航空领域也存在一定的缺陷,还需要技术稳定性验证积累。增材制造技术由于本身各向异性的特点决定了机械性能,在不同方向的波动相对较大。例如,据《激光增材制造在航空航天领域中的应用》(贾玉梅,年7月)一文,由于内应力问题和内部质量难控多变等因素,控制增材制造成形零件的变形开裂是一个永恒的问题。此外,在增材制造技术制造的零件机械性能稳定性达到航空航天部门的要求之前,还需要做进一步的工作。随着技术的改进和科技水平的提高,3D打印有望在航空航天领域或有更大的作为。
二、商业模式:范围经济强,掌握设备制造居产业主导
(一)3D打印产品以偏小批量居多、定制化直销,范围经济或降成本
3D打印产业链覆盖多种服务与应用领域,打印设备厂商占产业链主导地位。3D打印行业上游包括原材料、核心硬件及建模工具(软件)。中游涵盖各类打印技术,以打印设备生产厂商为主,由于设备的匹配性要求,此类厂商往往同时涉及上游。3D打印的下游除了跟踪服务平台,3D打印出的产品应用领域广泛,以航空航天、汽车工业等领域为主,在生物、食品及建筑领域也有特殊应用。由于3D打印的成本较高,真正掌握打印生产能力或设备制造能力的中游厂商在行业中占主导地位。在国际竞争中领先的3DSystems、GE增材、SLMSolutionsGroup等,以及国内主要厂商铂力特、鑫精合等具备3D打印设备制造的相关业务。
基于增材制造工艺特性下目前多为定制化生产,需较早介入甚至参与客户产品设计,这决定了其定制化产品多为直接销售。以铂力特为例,其下游主要是航天航空领域客户。增材制造对微观组织结构的控制能力,能较好满足功能集成性零件、拓扑优化异性零件等需求。而为了更好地完成产品定制化需求,相关公司会进行定制化原材料选择、定制化生产以及设计定制化工艺等。但3D打印产品的定制化直销,有时或导致公司销售额易受下游大客户需求波动所影响。例如,铂力特在-年航空航天领域客户收入占主营业务收入分别为62.35%、54.32%、62.21%,前五大客户也主要集中该领域。
增材制造对原材料利用率明显高于减材制造,但设备成本高,目前多为小批量生产。相较于传统建材制造中材料去除、切削、组装等流程,增材制造按分层制造、逐层叠加的工艺顺序,减免了打磨、拼接等过程中材料的浪费,据铂力特招股说明书,金属3D打印技术材料利用率可高达95%。根据NanoDimension
转载请注明:http://www.aideyishus.com/lkjg/1865.html